Saltar al contenido
Ley de Coulomb - Charles de Coulomb

La Ley de Coulomb es una ley física que describe la relación que existe entre la fuerza, la carga y la distancia. El nombre de la ley se corresponde con el apellido del físico francés Charles A. Coulomb (1736-1804) quien la enunció en 1785.

Coulomb estableció la ley fundamental de la fuerza eléctrica entre dos partículas cargadas estáticamente.

Índice de Contenido

¿Qué es la Ley de Coulomb?

Dos cargas eléctricas ejerce entre sí una fuerza de atracción o repulsión. Coulomb demostró que la fuerza que ejercen entre sí dos cuerpos cargados eléctricamente, es directamente proporcional al producto de sus masas eléctricas o cargas, e inversamente proporcional al cuadrado de la distancia que los separa.

Tal fuerza se aplica en los respectivos centros de las cargas y están dirigidos a lo largo de la línea que las une. Estas afirmaciones constituyen la ley de Coulomb que se representa por una expresión análoga a la ley gravitacional de Newton.

La carga eléctrica, al igual que la masa, constituye una propiedad fundamental de la materia. El desarrollo de la Teoría Atómica moderna permitió aclarar el origen de la naturaleza de los fenómenos eléctricos. Un átomo de cualquier sustancia está constituido en esencia, por una región central o núcleo y una envoltura externa formada por electrones . El núcleo está formado por dos tipos de partículas, los protones , dotados de carga eléctrica positiva, y los neutrones sin carga eléctrica aunque con una masa semejante a la del Protón.

coulomb3

Los electrones son partículas mucho más ligeros que los protones y tienen carga eléctrica negativa. La carga de un electrón es igual en magnitud, aunque de signo contrario, a la de un protón. Las fuerzas eléctricas que experimentan los electrones respecto del núcleo hacen que éstos se muevan en torno a él. La carga del electrón (o protón) constituye el valor mínimo e indivisible de cantidad de electricidad. 

La ley de Coulomb es la ley fundamental de la electrostática que determina la fuerza con la que se atraen o se repelen dos cargas eléctricas. Las primeras medidas cuantitativas relacionadas con las atracciones y repulsiones eléctricas se deben al físico francés Charles Agustín Coulomb (1736-1806) en el siglo XVIII. Para efectuar sus mediciones utilizó una balanza de torsión de su propia invención y encontró que la fuerza de atracción o repulsión entre dos cargas eléctricas puntuales es inversamente proporcional al cuadrado de la distancia que las separa.

coulomb4

La parte fundamental de este dispositivo consiste en una varilla liviana de material aislante, suspendida de una fibra aisladora que lleva en un extremo una esfera A de material liviano recubierta de grafito. Una segunda esfera B , idéntica a la anterior, se coloca en posición fija, próxima a la esfera A . Si ambas esferas se cargan con electricidades del mismo signo, se repelen, dando origen a una rotación de la varilla y, por consiguiente, a una torsión de la fibra de suspensión en un ángulo q. Coulomb tenía conocimiento de que el ángulo de torsión q de la fibra es directamente proporcional a la fuerza que produce dicha torsión, por lo que utilizó dicho ángulo como una medida indirecta de la fuerza de repulsión entre las esferas.

coulomb5
coulomb6

Después de realizar numerosas mediciones haciendo variar las cargas de las esferas y la separación entre ellas, Coulomb llegó a las siguientes conclusiones:

Si se mantiene constante la separación entre las cargas, la fuerza de atracción o de repulsión es, en valor absoluto, proporcional al producto de los valores absolutos de las cargas. Es decir, si la fuerza de atracción o de repulsión es F, y los valores absolutos de las cargas q1 y q2  se tiene que:

coulomb7

Si las cargas eléctricas se mantienen constantes, la fuerza de atracción o de repulsión entre ellas es, en valor absoluto, inversamente proporcional al cuadrado de la distancia que las separa. Es decir, si la separación entre las cargas es r , se tiene que:

coulomb8
coulomb9

Todo lo anterior se puede expresar matemáticamente en la forma siguiente:

coulomb11
coulomb10

Para expresar este resultado en forma de igualdad, el segundo miembro viene multiplicado por una constante K :

Coulomb 12

El valor de la constante K depende de las unidades en las cuales se expresan F, q y r. También depende del medio que separa a las cargas. Esta ecuación se llama Ley de Coulomb y puede enunciarse como sigue:

«La fuerza de atracción o de repulsión entre dos cargas eléctricas es, directamente proporcional al producto de los valores absolutos de las cargas e inversamente proporcional al cuadrado de la distancia que las separa»

Si ambas cargas tienen el mismo signo , es decir, si ambas son positivas o ambas negativas, la fuerza es repulsiva. Si las dos cargas tienen signos opuestos la fuerza es atractiva.

coulomb13
coulomb14

La ley de Coulomb es válida únicamente para objetos cargados cuyas dimensiones sean pequeñas comparadas con la distancia que las separa. Esto se expresa diciendo que dicha ley es válida para cargas puntuales, es decir, cargas eléctricas que se suponen concentradas en un punto. En el Sistema Internacional la unidad de fuerza es el Newton (New), la unidad de distancia es el metro (m), la unidad de intensidad de corriente es el Amperio (A) y la unidad de carga se llama Coulomb (C).

Por razones de precisión en las medidas la unidad de carga no se define en función de la ley de Coulomb, o sea utilizando la balanza de torsión, sino que se define en función de la unidad de intensidad de corriente en la forma siguiente:

«Un Coulomb ( C ) es la cantidad de carga eléctrica que pasa por la sección transversal de un conductor en un segundo, cuando por el conductor circula una corriente de Amperio»

Como las unidades de fuerza, carga y distancia en el sistema SI se han definido independientemente de la Ley de Coulomb, el valor numérico de la constante de proporcionalidad K debe medirse experimentalmente. El valor de la constante K depende de la naturaleza del medio. El valor numérico de la constante K depende de la opción de unidades. Si la fuerza está en Newton, la distancia en metros (m), y la carga en coulomb ( C ), entonces K tiene un valor de 9 x 109 New. m2 /C2.

coulomb15

«La constante eléctrica K viene a ser 1020 veces mayor que la constante gravitacional G. Lo que indica que el campo gravitatorio es muy débil comparado con el eléctrico. Esta diferencia tiene una consecuencia muy útil: en el estudio de los fenómenos eléctricos los efectos gravitatorios son despreciables»

La constante K se escribe como:

coulomb17

Donde eo “epsilon-zero” es:

coulomb18

y es conocida como el coeficiente de permitividad.

  • F   Es la fuerza con que se accionan las cargas.
  • K Es la constante de proporcionalidad o de Coulomb
  • q 1 La cantidad de la carga 1 expresadas en Coulombs
  • q 2 La cantidad de carga 2 expresadas en Coulombs
  • r es la distancia de separación desde el centro de una carga al centro de la otra.
coulomb19

Unidades de Carga Eléctrica

Coulomb (C). Es la unidad de carga eléctrica en el sistema MKS y se define como la carga eléctrica capaz de atraer o repeler a otra igual situada en el vacío y a la distancia de un metro y con la fuerza de 9×109 Newtons.

StatCoulomb. Es la unidad de carga del sistema C.G.S y se define como la carga eléctrica capaz de atraer o repeler a otra igual en el vacío y a la distancia de un centímetro con la fuerza de una DINA.

1 coulomb = 3×109 statcoulomb
1 coulomb = 6X1018 electrones

Submúltiplos:
milicoulomb mC = 10-3 C
nanocoulomb nC = 10-9 C
picocoulomb pC = 10-12 C
microcoulomb m C = 10-6 C