Cálculo simplificado de cortocircuitos trifásicos en redes no malladas

Corriente de cortocircuito

La corriente de cortocircuito Icc en un lugar de una instalación, con tensión entre fases Vlin e impedancia por fase estrella de cortocircuito Zcc , vale:

Icc = Vlin / (Ö3 . Zcc)

Donde la impedancia de cortocircuito Zcc, con su parte activa Rcc y reactiva Xcc, incluye todas las contribuciones desde los bornes del generador equivalente ideal y el punto de falla trifásica:

Zcc = (R2cc + X2cc)½

Contribución a la impedancia de cortocircuito de la red

La contribución ZccR  a la impedancia de cortocircuito de toda la red que se encuentra aguas arriba de un punto que se sabe que tiene una potencia de cortocircuito SccR y con tensión entre fases VR, resulta:

ZccR = V2R / SccR                                             estimativamente puede tomarse SccR= 300 MVA para 13,2 kV

RccR = ZccR . cos f                                          estimativamente puede tomarse cos f = 0,06

XccR = ZccR . sen f

Contribución a la impedancia de cortocircuito de un transformador

La contribución ZccT a la impedancia de cortocircuito de un transformador, que tiene una potencia nominal ST, una tensión de cortocircuito porcentual VccT(%), unas pérdidas en el cobre porcentuales PcuT(%) y con tensión entre fases vale VT, puede calcularse con:

ZccT(%) = VccT(%)

ZccT  = 0,01 . VccT(%) . V2T / ST

RccT(%) = PcuT(%)

RccT  = 0,01 . PcuT(%) . V2T / ST

XccT  = (Z2ccT – R2ccT)½

Contribución a la impedancia de cortocircuito de un cable

La contribución ZccC a la impedancia de cortocircuito de un cable de longitud lC, que tiene una resistencia por fase por unidad de longitud rC  y una reactancia por fase por unidad de longitud xC a frecuencia de red, puede calcularse con:

ZccC  = (R2ccC  + X2ccC)½

RccC  = lC . rC

XccC  = lC . xC

Comentarios

[fbcomments]